Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2354x 2x 2x 2x 2x 2x | /** * @license Apache-2.0 * * Copyright (c) 2022 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a generated file. Do not edit directly. */ 'use strict'; // MAIN // /** * Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\). * * ## Notes * * - Coefficients should be sorted in ascending degree. * - The implementation uses [Horner's rule][horners-method] for efficient computation. * * [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method * * @private * @param {number} x - value at which to evaluate the rational function * @returns {number} evaluated rational function */ function evalrational( x ) { var ax; var s1; var s2; if ( x === 0.0 ) { return 0.021593919914419626; } if ( x < 0.0 ) { ax = -x; } else { ax = x; } if ( ax <= 1.0 ) { s1 = 11514276357909012000.0 + (x * (-5680809457472421000.0 + (x * (-23638408497043136.0 + (x * (4068627528980474.5 + (x * (-59530713129741.984 + (x * (374536739624.3849 + (x * (-1195796191.2070618 + (x * (1915380.6858264203 + (x * -1233.7180442012952))))))))))))))); // eslint-disable-line max-len s2 = 533218443133161800000.0 + (x * (5696819882285718000.0 + (x * (30837179548112880.0 + (x * (111870100658569.7 + (x * (302217668529.60406 + (x * (635503180.8708892 + (x * (1045374.8201934079 + (x * (1285.516484932161 + (x * 1.0))))))))))))))); // eslint-disable-line max-len } else { x = 1.0 / x; s1 = -1233.7180442012952 + (x * (1915380.6858264203 + (x * (-1195796191.2070618 + (x * (374536739624.3849 + (x * (-59530713129741.984 + (x * (4068627528980474.5 + (x * (-23638408497043136.0 + (x * (-5680809457472421000.0 + (x * 11514276357909012000.0))))))))))))))); // eslint-disable-line max-len s2 = 1.0 + (x * (1285.516484932161 + (x * (1045374.8201934079 + (x * (635503180.8708892 + (x * (302217668529.60406 + (x * (111870100658569.7 + (x * (30837179548112880.0 + (x * (5696819882285718000.0 + (x * 533218443133161800000.0))))))))))))))); // eslint-disable-line max-len } return s1 / s2; } // EXPORTS // module.exports = evalrational; |