All files / math/base/special/bessely1/lib main.js

100% Statements 152/152
100% Branches 12/12
100% Functions 1/1
100% Lines 152/152

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 1532x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 83288x 83288x 83288x 83288x 83288x 83288x 83288x 83288x 83288x 83288x 2002x 2002x 83288x 2x 2x 83288x 2x 2x 83288x 41230x 41230x 41230x 41230x 41230x 41230x 83288x 2354x 2354x 2354x 2354x 2354x 2354x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 37698x 83288x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link https://github.com/boostorg/math/blob/develop/include/boost/math/special_functions/detail/bessel_y1.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* Copyright Xiaogang Zhang, 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
 
'use strict';
 
// MODULES //
 
var ln = require( '@stdlib/math/base/special/ln' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
var PI = require( '@stdlib/constants/float64/pi' );
var SQRT_PI = require( '@stdlib/constants/float64/sqrt-pi' );
var NINF = require( '@stdlib/constants/float64/ninf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var sincos = require( '@stdlib/math/base/special/sincos' ).assign;
var besselj1 = require( '@stdlib/math/base/special/besselj1' );
var poly1 = require( './rational_p1q1.js' );
var poly2 = require( './rational_p2q2.js' );
var polyC = require( './rational_pcqc.js' );
var polyS = require( './rational_psqs.js' );
 
 
// VARIABLES //
 
var ONE_DIV_SQRT_PI = 1.0 / SQRT_PI;
var TWO_DIV_PI = 2.0 / PI;
 
var x1 = 2.1971413260310170351e+00;
var x2 = 5.4296810407941351328e+00;
var x11 = 5.620e+02;
var x12 = 1.8288260310170351490e-03;
var x21 = 1.3900e+03;
var x22 = -6.4592058648672279948e-06;
 
// `sincos` workspace:
var sc = [ 0.0, 0.0 ];
 
 
// MAIN //
 
/**
* Computes the Bessel function of the second kind of order one.
*
* ## Notes
*
* -   Accuracy for subnormal `x` is very poor. Full accuracy is achieved at `1.0e-308` but trends progressively to zero at `5e-324`. This suggests that underflow (or overflow, perhaps due to a reciprocal) is effectively cutting off digits of precision until the computation loses all accuracy at `5e-324`.
*
* @param {number} x - input value
* @returns {number} evaluated Bessel function
*
* @example
* var v = y1( 0.0 );
* // returns -Infinity
*
* v = y1( 1.0 );
* // returns ~-0.781
*
* v = y1( -1.0 );
* // returns NaN
*
* v = y1( Infinity );
* // returns 0.0
*
* v = y1( -Infinity );
* // returns NaN
*
* v = y1( NaN );
* // returns NaN
*/
function y1( x ) {
	var rc;
	var rs;
	var y2;
	var r;
	var y;
	var z;
	var f;
 
	if ( x < 0.0 ) {
		return NaN;
	}
	if ( x === 0.0 ) {
		return NINF;
	}
	if ( x === PINF ) {
		return 0.0;
	}
	if ( x <= 4.0 ) {
		y = x * x;
		z = ( ln( x/x1 ) * besselj1( x ) ) * TWO_DIV_PI;
		r = poly1( y );
		f = ( ( x+x1 ) * ( (x - (x11/256.0)) - x12 ) ) / x;
		return z + ( f*r );
	}
	if ( x <= 8.0 ) {
		y = x * x;
		z = ( ln( x/x2 ) * besselj1( x ) ) * TWO_DIV_PI;
		r = poly2( y );
		f = ( ( x+x2 ) * ( (x - (x21/256.0)) - x22 ) ) / x;
		return z + ( f*r );
	}
	y = 8.0 / x;
	y2 = y * y;
	rc = polyC( y2 );
	rs = polyS( y2 );
	f = ONE_DIV_SQRT_PI / sqrt( x );
 
	/*
	* This code is really just:
	*
	* ```
	* z = x - 0.75 * PI;
	* return f * (rc * sin(z) + y * rs * cos(z));
	* ```
	*
	* But using the sin/cos addition rules, plus constants for sin/cos of `3π/4` which then cancel out with corresponding terms in "f".
	*/
	sincos( x, sc, 1, 0 );
	return f * ( ( ( (y*rs) * (sc[0]-sc[1]) ) - ( rc * (sc[0]+sc[1]) ) ) );
}
 
 
// EXPORTS //
 
module.exports = y1;