All files main.js

100% Statements 147/147
100% Branches 20/20
100% Functions 1/1
100% Lines 147/147

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 1482x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1026x 1008x 1026x 19x 19x 1007x 1026x 127x 127x 1026x 512x 512x 368x 368x 368x 368x 368x 368x 368x 368x 368x 1026x 6097x 6097x 6097x 6097x 368x 368x 1026x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var trunc = require( '@stdlib/math/base/special/trunc' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var pmf = require( '@stdlib/stats/base/dists/hypergeometric/pmf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
var Float64Array = require( '@stdlib/array/float64' );
var sum = require( './sum.js' );
 
 
// MAIN //
 
/**
* Evaluates the cumulative distribution function (CDF) for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n` at a value `x`.
*
* @param {number} x - input value
* @param {NonNegativeInteger} N - population size
* @param {NonNegativeInteger} K - subpopulation size
* @param {NonNegativeInteger} n - number of draws
* @returns {Probability} evaluated CDF
*
* @example
* var y = cdf( 1.0, 8, 4, 2 );
* // returns ~0.786
*
* @example
* var y = cdf( 1.5, 8, 4, 2 );
* // returns ~0.786
*
* @example
* var y = cdf( 2.0, 8, 4, 2 );
* // returns 1.0
*
* @example
* var y = cdf( 0, 8, 4, 2 );
* // returns ~0.214
*
* @example
* var y = cdf( NaN, 10, 5, 2 );
* // returns NaN
*
* @example
* var y = cdf( 0.0, NaN, 5, 2 );
* // returns NaN
*
* @example
* var y = cdf( 0.0, 10, NaN, 2 );
* // returns NaN
*
* @example
* var y = cdf( 0.0, 10, 5, NaN );
* // returns NaN
*
* @example
* var y = cdf( 2.0, 10.5, 5, 2 );
* // returns NaN
*
* @example
* var y = cdf( 2.0, 10, 1.5, 2 );
* // returns NaN
*
* @example
* var y = cdf( 2.0, 10, 5, -2.0 );
* // returns NaN
*
* @example
* var y = cdf( 2.0, 10, 5, 12 );
* // returns NaN
*
* @example
* var y = cdf( 2.0, 8, 3, 9 );
* // returns NaN
*/
function cdf( x, N, K, n ) {
	var denom;
	var probs;
	var num;
	var ret;
	var i;
 
	if (
		isnan( x ) ||
		isnan( N ) ||
		isnan( K ) ||
		isnan( n ) ||
		!isNonNegativeInteger( N ) ||
		!isNonNegativeInteger( K ) ||
		!isNonNegativeInteger( n ) ||
		N === PINF ||
		K === PINF ||
		K > N ||
		n > N
	) {
		return NaN;
	}
	x = trunc( x );
	if ( x < max( 0, n+K-N ) ) {
		return 0.0;
	}
	if ( x >= min( n, K ) ) {
		return 1.0;
	}
 
	probs = new Float64Array( x+1 );
	probs[ x ] = pmf( x, N, K, n );
 
	/*
	* Use recurrence relation:
	*
	*   (x+1)( N - K - (n-x-1))P(X=x+1)=(K-x)(n-x)P(X=x)
	*/
	for ( i = x-1; i >= 0; i-- ) {
		num = ( i+1 ) * ( N-K-(n-i-1) );
		denom = ( K-i ) * ( n-i );
		probs[ i ] = ( num/denom ) * probs[ i+1 ];
	}
	ret = sum( probs );
	return min( ret, 1.0 );
}
 
 
// EXPORTS //
 
module.exports = cdf;