All files binomial_ccdf.js

56.86% Statements 58/102
100% Branches 1/1
0% Functions 0/1
56.86% Lines 58/102

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 1031x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                                         1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C++ code and copyright notice are from the [Boost library]{@link http://www.boost.org/doc/libs/1_61_0/boost/math/special_functions/beta.hpp}. The implementation has been modified for JavaScript.
*
* ```text
* (C) Copyright John Maddock 2006.
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
* ```
*/
 
'use strict';
 
// MODULES //
 
var binomcoef = require( '@stdlib/math/base/special/binomcoef' );
var floor = require( '@stdlib/math/base/special/floor' );
var pow = require( '@stdlib/math/base/special/pow' );
var MIN_VALUE = require( '@stdlib/constants/float64/smallest-normal' );
 
 
// MAIN //
 
/**
* For integer arguments we can relate the incomplete beta to the complement of the binomial distribution cdf and use this finite sum.
*
* @private
* @param {NonNegativeInteger} n - number of trials
* @param {NonNegativeInteger} k - function input
* @param {Probability} x - function input
* @param {Probability} y - probability equal to `1-x`
* @returns {number} sum
*/
function binomialCCDF( n, k, x, y ) {
	var startTerm;
	var result;
	var start;
	var term;
	var i;

	result = pow( x, n );
	if ( result > MIN_VALUE ) {
		term = result;
		for ( i = floor( n - 1 ); i > k; i-- ) {
			term *= ((i + 1) * y) / ((n - i) * x);
			result += term;
		}
	} else {
		// First term underflows so we need to start at the mode of the distribution and work outwards:
		start = floor( n * x );
		if ( start <= k + 1 ) {
			start = floor( k + 2 );
		}
		result = pow( x, start ) * pow( y, n - start );
		result *= binomcoef( floor(n), floor(start) );
		if ( result === 0.0 ) {
			// OK, starting slightly above the mode didn't work, we'll have to sum the terms the old fashioned way:
			for ( i = start - 1; i > k; i-- ) {
				result += pow( x, i ) * pow( y, n - i );
				result *= binomcoef( floor(n), floor(i) );
			}
		} else {
			term = result;
			startTerm = result;
			for ( i = start - 1; i > k; i-- ) {
				term *= ((i + 1) * y) / ((n - i) * x);
				result += term;
			}
			term = startTerm;
			for ( i = start + 1; i <= n; i++ ) {
				term *= (n - i + 1) * x / (i * y);
				result += term;
			}
		}
	}
	return result;
}
 
 
// EXPORTS //
 
module.exports = binomialCCDF;