Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 206x 3x 3x 143x 143x 143x 206x 57x 57x 6x 6x 6x 51x 57x 3x 3x 48x 48x 48x 48x 48x 48x 86x 86x 86x 86x 134x 206x 42x 42x 23x 23x 42x 92x 92x 85x 48x 85x 37x 37x 81x 92x 7x 7x 121x 206x 3x 3x 3x 3x 3x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isComplexLike = require( '@stdlib/assert/is-complex-like' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var nonCoreShape = require( '@stdlib/ndarray/base/complement-shape' );
var getDType = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' );
var getOrder = require( '@stdlib/ndarray/order' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
// MAIN //
/**
* Computes the cumulative sum along one or more ndarray dimensions.
*
* @param {ndarrayLike} x - input ndarray
* @param {(ndarrayLike|number|ComplexLike)} [initial] - initial value
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform operation
* @param {*} [options.dtype] - output ndarray data type
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} initial value argument must be either an ndarray-like object or a numeric value
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, -3.0, 4.0, -5.0, 6.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 2, 2, 1 ];
*
* // Define the index offset:
* var ox = 0;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Perform operation:
* var out = cusum( x );
* // returns <ndarray>[ [ [ 1.0, 3.0 ] ], [ [ 0.0, 4.0 ] ], [ [ -1.0, 5.0 ] ] ]
*/
function cusum( x ) {
var nargs;
var opts;
var ord;
var dt;
var sh;
var v;
nargs = arguments.length;
// Resolve input ndarray meta data:
dt = getDType( x );
ord = getOrder( x );
// Case: cusum( x )
if ( nargs < 2 ) {
return base( x, broadcastScalar( 0.0, dt, [], ord ) );
}
v = arguments[ 1 ];
// Case: cusum( x, ??? )
if ( nargs === 2 ) {
// Case: cusum( x, initial_ndarray )
if ( isndarrayLike( v ) ) {
// As the operation is performed across all dimensions, `v` is assumed to be a zero-dimensional ndarray...
return base( x, v );
}
// Case: cusum( x, initial_scalar )
if ( isNumber( v ) || isComplexLike( v ) ) {
return base( x, broadcastScalar( v, dt, [], ord ) );
}
// Case: cusum( x, opts )
opts = v;
v = 0.0;
// Intentionally fall through...
}
// Case: cusum( x, initial, opts )
else { // nargs > 2
opts = arguments[ 2 ];
}
// Case: cusum( x, initial_ndarray, opts )
if ( isndarrayLike( v ) ) {
// When not provided `dims`, the operation is performed across all dimensions and `v` is assumed to be a zero-dimensional ndarray; when `dims` is provided, we need to broadcast `v` to match the shape of the non-core dimensions...
if ( hasOwnProp( opts, 'dims' ) ) {
v = maybeBroadcastArray( v, nonCoreShape( getShape( x ), opts.dims ) ); // eslint-disable-line max-len
}
}
// Case: cusum( x, initial_scalar, opts )
else if ( isNumber( v ) || isComplexLike( v ) ) {
if ( hasOwnProp( opts, 'dims' ) ) {
sh = nonCoreShape( getShape( x ), opts.dims );
} else {
sh = [];
}
v = broadcastScalar( v, dt, sh, ord );
} else {
throw new TypeError( format( 'invalid argument. Second argument must be either an ndarray or a numeric scalar value. Value: `%s`.', v ) );
}
return base( x, v, opts );
}
// EXPORTS //
module.exports = cusum;
|