All files assign.js

100% Statements 159/159
100% Branches 24/24
100% Functions 1/1
100% Lines 159/159

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 1603x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 311x 19x 19x 232x 232x 232x 232x 311x 109x 109x 31x 31x 13x 13x 13x 18x 31x 8x 8x 10x 10x 10x 78x 78x 78x 78x 78x 78x 78x 123x 123x 123x 123x 201x 311x 60x 60x 35x 35x 60x 141x 141x 133x 72x 133x 61x 61x 129x 141x 8x 8x 187x 311x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isComplexLike = require( '@stdlib/assert/is-complex-like' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var broadcastScalar = require( '@stdlib/ndarray/base/broadcast-scalar' );
var maybeBroadcastArray = require( '@stdlib/ndarray/base/maybe-broadcast-array' );
var nonCoreShape = require( '@stdlib/ndarray/base/complement-shape' );
var getDType = require( '@stdlib/ndarray/dtype' );
var getShape = require( '@stdlib/ndarray/shape' );
var getOrder = require( '@stdlib/ndarray/order' );
var format = require( '@stdlib/string/format' );
var base = require( './base.js' ).assign;
 
 
// MAIN //
 
/**
* Computes the cumulative sum along one or more ndarray dimensions and assigns the results to a provided output ndarray.
*
* @param {ndarrayLike} x - input ndarray
* @param {(ndarrayLike|number|ComplexLike)} [initial] - initial value
* @param {ndarrayLike} out - output ndarray
* @param {Options} [options] - function options
* @param {integer} [options.dims] - list of dimensions over which to perform operation
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {TypeError} initial value argument must be either an ndarray-like object or a numeric value
* @throws {TypeError} output argument must be an ndarray-like object
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create data buffers:
* var xbuf = new Float64Array( [ 1.0, 2.0, -3.0, 4.0, -5.0, 6.0 ] );
* var ybuf = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
*
* // Define the shape of the input array:
* var shape = [ 3, 1, 2 ];
*
* // Define the array strides:
* var strides = [ 2, 2, 1 ];
*
* // Define the index offset:
* var offset = 0;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, shape, strides, offset, 'row-major' );
*
* // Create an output ndarray:
* var y = new ndarray( 'float64', ybuf, shape, strides, offset, 'row-major' );
*
* // Perform operation:
* var out = assign( x, y );
* // returns <ndarray>[ [ [ 1.0, 3.0 ] ], [ [ 0.0, 4.0 ] ], [ [ -1.0, 5.0 ] ] ]
*
* var bool = ( out === y );
* // returns true
*/
function assign( x ) {
	var nargs;
	var opts;
	var ord;
	var out;
	var dt;
	var sh;
	var v;
 
	nargs = arguments.length;
 
	// Resolve input ndarray meta data:
	dt = getDType( x );
	ord = getOrder( x );
 
	// Case: assign( x, out )
	if ( nargs < 3 ) {
		return base( x, broadcastScalar( 0.0, dt, [], ord ), arguments[ 1 ] );
	}
	v = arguments[ 1 ];
	out = arguments[ 2 ];
 
	// Case: assign( x, ???, ??? )
	if ( nargs === 3 ) {
		// Case: assign( x, initial, out )
		if ( isndarrayLike( out ) ) {
			// Case: assign( x, initial_ndarray, out )
			if ( isndarrayLike( v ) ) {
				// As the operation is performed across all dimensions, `v` is assumed to be a zero-dimensional ndarray...
				return base( x, v, out );
			}
			// When computing the sum, initial values must be numeric...
			if ( !isNumber( v ) && !isComplexLike( v ) ) {
				throw new TypeError( format( 'invalid argument. Second argument must be either an ndarray or a numeric scalar value. Value: `%s`.', v ) );
			}
			// Case: assign( x, initial_scalar, out )
			return base( x, broadcastScalar( v, dt, [], ord ), out );
		}
		// Case: assign( x, out, opts )
		opts = out;
		out = v;
		v = 0.0;
 
		// Intentionally fall through...
	}
	// Case: assign( x, initial, out, opts )
	else { // nargs > 3
		opts = arguments[ 3 ];
	}
	// Case: assign( x, initial_ndarray, out, opts )
	if ( isndarrayLike( v ) ) {
		// When not provided `dims`, the operation is performed across all dimensions and `v` is assumed to be a zero-dimensional ndarray; when `dims` is provided, we need to broadcast `v` to match the shape of the non-core dimensions...
		if ( hasOwnProp( opts, 'dims' ) ) {
			v = maybeBroadcastArray( v, nonCoreShape( getShape( x ), opts.dims ) ); // eslint-disable-line max-len
		}
	}
	// Case: assign( x, initial_scalar, out, opts )
	else if ( isNumber( v ) || isComplexLike( v ) ) {
		if ( hasOwnProp( opts, 'dims' ) ) {
			sh = nonCoreShape( getShape( x ), opts.dims );
		} else {
			sh = [];
		}
		v = broadcastScalar( v, dt, sh, getOrder( x ) );
	} else {
		throw new TypeError( format( 'invalid argument. Second argument must be either an ndarray or a numeric scalar value. Value: `%s`.', v ) );
	}
	return base( x, v, out, opts );
}
 
 
// EXPORTS //
 
module.exports = assign;