Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 20x 20x 20x 20x 20x 20x 20x 20x 4x 4x 20x 4x 4x 12x 20x 2x 2x 10x 10x 20x 40x 40x 40x 40x 10x 20x 3x 3x 3x 3x 3x | /**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var dmean = require( '@stdlib/stats/strided/dmean' );
var abs = require( '@stdlib/math/base/special/abs' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
// MAIN //
/**
* Computes the mean absolute deviation of a double-precision floating-point strided array using alternative indexing semantics.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Float64Array} x - input array
* @param {integer} strideX - stride length
* @param {NonNegativeInteger} offsetX - starting index
* @returns {number} mean absolute deviation
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
*
* var v = dmad( x.length, x, 1, 0 );
* // returns ~1.5556
*/
function dmad( N, x, strideX, offsetX ) {
var sum;
var mu;
var ix;
var d;
var i;
if ( N <= 0 ) {
return NaN;
}
if ( N === 1 || strideX === 0 ) {
return 0.0;
}
mu = dmean.ndarray( N, x, strideX, offsetX );
if ( isnan( mu ) ) {
return NaN;
}
ix = offsetX;
sum = 0.0;
for ( i = 0; i < N; i++ ) {
d = x[ ix ] - mu;
sum += abs( d );
ix += strideX;
}
return sum / N;
}
// EXPORTS //
module.exports = dmad;
|