All files ndarray.js

100% Statements 72/72
100% Branches 2/2
100% Functions 1/1
100% Lines 72/72

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 732x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 20x 20x 20x 2x 2x 2x 2x 2x  
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes the LU factorization with complete pivoting of the general n-by-n matrix `A` using alternating indexing semantics.
*
* ## Notes
*
* -   `A` should have dimension (LDA, N) and is overwritten with the factors L and U from the factorization `A = P*L*U*Q`; the unit diagonal elements of L are not stored.
* -   If U(k, k) appears to be less than `SMIN`, U(k, k) is given the value of `SMIN`, i.e., giving a nonsingular perturbed system.
* -   `IPIV` should have `N` elements and is overwritten with the pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i).
* -   `JPIV` should have `N` elements and is overwritten with the pivot indices; for 1 <= i <= N, column i of the matrix has been interchanged with column JPIV(i).
* -   Returns 0 on successful exit and if returns `k`, U(k, k) is likely to produce overflow if we try to solve for x in Ax = b. So U is perturbed to avoid the overflow.
*
* @param {PositiveInteger} N - number of columns in matrix `A`
* @param {Float64Array} A - input matrix
* @param {integer} strideA1 - stride of the first dimension of `A`
* @param {integer} strideA2 - stride of the second dimension of `A`
* @param {NonNegativeInteger} offsetA - index offset for `A`
* @param {Int32Array} IPIV - the pivot indices for rows
* @param {integer} strideIPIV - stride length for `IPIV`
* @param {NonNegativeInteger} offsetIPIV - index offset for `IPIV`
* @param {Int32Array} JPIV - the pivot indices for columns
* @param {integer} strideJPIV - stride length for `JPIV`
* @param {NonNegativeInteger} offsetJPIV - index offset for `JPIV`
* @returns {integer} - status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Int32Array = require( '@stdlib/array/int32' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0 ] );
* var IPIV = new Int32Array( 3 );
* var JPIV = new Int32Array( 3 );
*
* dgetc2( 3, A, 1, 3, 0, IPIV, 1, 0, JPIV, 1, 0 );
* // A => <Float64Array>[ 10, 0.7, 0.8, 3, ~-1.1, ~0.36, 6, ~-0.2, ~0.27 ]
* // JPIV = <Int32Array>[ 3, 3, 3 ]
* // IPIV = <Int32Array>[ 3, 3, 3 ]
*/
function dgetc2( N, A, strideA1, strideA2, offsetA, IPIV, strideIPIV, offsetIPIV, JPIV, strideJPIV, offsetJPIV ) { // eslint-disable-line max-len, max-params
	return base( N, A, strideA1, strideA2, offsetA, IPIV, strideIPIV, offsetIPIV, JPIV, strideJPIV, offsetJPIV ); // eslint-disable-line max-len
}
 
 
// EXPORTS //
 
module.exports = dgetc2;