Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 2x 20x 20x 20x 2x 2x 2x 2x 2x | /**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var base = require( './base.js' );
// MAIN //
/**
* Computes the LU factorization with complete pivoting of the general n-by-n matrix `A` using alternating indexing semantics.
*
* ## Notes
*
* - `A` should have dimension (LDA, N) and is overwritten with the factors L and U from the factorization `A = P*L*U*Q`; the unit diagonal elements of L are not stored.
* - If U(k, k) appears to be less than `SMIN`, U(k, k) is given the value of `SMIN`, i.e., giving a nonsingular perturbed system.
* - `IPIV` should have `N` elements and is overwritten with the pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i).
* - `JPIV` should have `N` elements and is overwritten with the pivot indices; for 1 <= i <= N, column i of the matrix has been interchanged with column JPIV(i).
* - Returns 0 on successful exit and if returns `k`, U(k, k) is likely to produce overflow if we try to solve for x in Ax = b. So U is perturbed to avoid the overflow.
*
* @param {PositiveInteger} N - number of columns in matrix `A`
* @param {Float64Array} A - input matrix
* @param {integer} strideA1 - stride of the first dimension of `A`
* @param {integer} strideA2 - stride of the second dimension of `A`
* @param {NonNegativeInteger} offsetA - index offset for `A`
* @param {Int32Array} IPIV - the pivot indices for rows
* @param {integer} strideIPIV - stride length for `IPIV`
* @param {NonNegativeInteger} offsetIPIV - index offset for `IPIV`
* @param {Int32Array} JPIV - the pivot indices for columns
* @param {integer} strideJPIV - stride length for `JPIV`
* @param {NonNegativeInteger} offsetJPIV - index offset for `JPIV`
* @returns {integer} - status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Int32Array = require( '@stdlib/array/int32' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0 ] );
* var IPIV = new Int32Array( 3 );
* var JPIV = new Int32Array( 3 );
*
* dgetc2( 3, A, 1, 3, 0, IPIV, 1, 0, JPIV, 1, 0 );
* // A => <Float64Array>[ 10, 0.7, 0.8, 3, ~-1.1, ~0.36, 6, ~-0.2, ~0.27 ]
* // JPIV = <Int32Array>[ 3, 3, 3 ]
* // IPIV = <Int32Array>[ 3, 3, 3 ]
*/
function dgetc2( N, A, strideA1, strideA2, offsetA, IPIV, strideIPIV, offsetIPIV, JPIV, strideJPIV, offsetJPIV ) { // eslint-disable-line max-len, max-params
return base( N, A, strideA1, strideA2, offsetA, IPIV, strideIPIV, offsetIPIV, JPIV, strideJPIV, offsetJPIV ); // eslint-disable-line max-len
}
// EXPORTS //
module.exports = dgetc2;
|