All files ndarray.js

100% Statements 110/110
100% Branches 15/15
100% Functions 1/1
100% Lines 110/110

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 1113x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 34x 34x 34x 34x 34x 34x 34x 34x 34x 34x 34x 34x 34x 34x 4x 4x 4x 4x 30x 34x 8x 8x 4x 4x 4x 4x 8x 8x 22x 22x 34x 4x 4x 4x 4x 18x 18x 18x 34x 80x 80x 80x 80x 80x 18x 18x 18x 18x 34x 4x 34x 14x 14x 18x 34x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' ).ndarray;
 
 
// MAIN //
 
/**
* Computes the mean and variance of a double-precision floating-point strided array using Welford's algorithm.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Float64Array} x - input array
* @param {integer} strideX - `x` stride length
* @param {NonNegativeInteger} offsetX - `x` starting index
* @param {Float64Array} out - output array
* @param {integer} strideOut - `out` stride length
* @param {NonNegativeInteger} offsetOut - `out` starting index
* @returns {Float64Array} output array
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
* var out = new Float64Array( 2 );
*
* var v = dmeanvarwd( 4, 1, x, 2, 1, out, 1, 0 );
* // returns <Float64Array>[ 1.25, 6.25 ]
*/
function dmeanvarwd( N, correction, x, strideX, offsetX, out, strideOut, offsetOut ) { // eslint-disable-line max-len
	var mu;
	var ix;
	var io;
	var M2;
	var M;
	var d;
	var c;
	var n;
	var i;
 
	ix = offsetX;
	io = offsetOut;
	if ( N <= 0 ) {
		out[ io ] = NaN;
		out[ io+strideOut ] = NaN;
		return out;
	}
	n = N - correction;
	if ( N === 1 || strideX === 0 ) {
		out[ io ] = x[ ix ];
		if ( n <= 0.0 ) {
			out[ io+strideOut ] = NaN;
		} else {
			out[ io+strideOut ] = 0.0;
		}
		return out;
	}
	// Compute an estimate for the mean:
	mu = dsumpw( N, x, strideX, offsetX ) / N;
	if ( isnan( mu ) ) {
		out[ io ] = NaN;
		out[ io+strideOut ] = NaN;
		return out;
	}
	// Compute the sum of squared differences from the mean...
	M2 = 0.0;
	M = 0.0;
	for ( i = 0; i < N; i++ ) {
		d = x[ ix ] - mu;
		M2 += d * d;
		M += d;
		ix += strideX;
	}
	// Compute an error term for the mean:
	c = M / N;
 
	out[ io ] = mu + c;
	if ( n <= 0.0 ) {
		out[ io+strideOut ] = NaN;
	} else {
		out[ io+strideOut ] = (M2/n) - (c*(M/n));
	}
	return out;
}
 
 
// EXPORTS //
 
module.exports = dmeanvarwd;