All files / unary-strided1d/lib 0d.js

95.55% Statements 129/135
100% Branches 1/1
0% Functions 0/1
95.55% Lines 129/135

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 1361x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x             1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Applies a one-dimensional strided array function to a list of specified dimensions in an input ndarray and assigns results to a provided output ndarray.
*
* @private
* @param {Function} fcn - wrapper for a one-dimensional strided array function
* @param {Array<Object>} arrays - ndarrays
* @param {Object} strategyX - strategy for marshaling data to and from an input ndarray view
* @param {Object} strategyY - strategy for marshaling data to and from an output ndarray view
* @param {Options} opts - function options
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
* var getStride = require( '@stdlib/ndarray/base/stride' );
* var getOffset = require( '@stdlib/ndarray/base/offset' );
* var getData = require( '@stdlib/ndarray/base/data-buffer' );
* var numelDimension = require( '@stdlib/ndarray/base/numel-dimension' );
* var ndarraylike2scalar = require( '@stdlib/ndarray/base/ndarraylike2scalar' );
* var gcusum = require( '@stdlib/blas/ext/base/gcusum' ).ndarray;
*
* function wrapper( arrays ) {
*     var x = arrays[ 0 ];
*     var y = arrays[ 1 ];
*     var s = arrays[ 2 ];
*     return gcusum( numelDimension( x, 0 ), ndarraylike2scalar( s ), getData( x ), getStride( x, 0 ), getOffset( x ), getData( y ), getStride( y, 0 ), getOffset( y ) );
* }
*
* // Create data buffers:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0 ] );
* var ybuf = new Float64Array( [ 0.0, 0.0, 0.0, 0.0 ] );
*
* // Define the array shapes:
* var xsh = [ 2, 2 ];
* var ysh = [ 2, 2 ];
*
* // Define the array strides:
* var sx = [ 2, 1 ];
* var sy = [ 2, 1 ];
*
* // Define the index offsets:
* var ox = 0;
* var oy = 0;
*
* // Create an input ndarray-like object:
* var x = {
*     'dtype': 'float64',
*     'data': xbuf,
*     'shape': xsh,
*     'strides': sx,
*     'offset': ox,
*     'order': 'row-major'
* };
*
* // Create an ndarray-like object for the initial sum:
* var initial = {
*     'dtype': 'float64',
*     'data': new Float64Array( [ 0.0 ] ),
*     'shape': [ 3 ],
*     'strides': [ 0 ],
*     'offset': 0,
*     'order': 'row-major'
* };
*
* // Create an output ndarray-like object:
* var y = {
*     'dtype': 'float64',
*     'data': ybuf,
*     'shape': ysh,
*     'strides': sy,
*     'offset': oy,
*     'order': 'row-major'
* };
*
* // Define an input strategy:
* function inputStrategy( x ) {
*     return {
*         'dtype': x.dtype,
*         'data': x.data,
*         'shape': [ 4 ],
*         'strides': [ 1 ],
*         'offset': x.offset,
*         'order': x.order
*     };
* }
*
* // Define an output strategy:
* function outputStrategy( x ) {
*     return x;
* }
*
* var strategy = {
*     'input': inputStrategy,
*     'output': outputStrategy
* };
*
* // Apply strided function:
* unary0d( wrapper, [ x, y, initial ], strategy, strategy, {} );
*
* var v = y.data;
* // returns <Float64Array>[ 1.0, 3.0, 6.0, 10.0 ]
*/
function unary0d( fcn, arrays, strategyX, strategyY, opts ) {
	arrays[ 0 ] = strategyX.input( arrays[ 0 ] );
	arrays[ 1 ] = strategyY.input( arrays[ 1 ] );
	fcn( arrays, opts );
	strategyY.output( arrays[ 1 ] );
}
 
 
// EXPORTS //
 
module.exports = unary0d;