Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MAIN //
/**
* Applies a callback function to elements in a zero-dimensional input ndarray and assigns results to elements in an equivalently shaped output ndarray.
*
* @private
* @param {Object} x - object containing ndarray meta data
* @param {ndarrayLike} x.ref - reference to the original ndarray-like object
* @param {*} x.dtype - data type
* @param {Collection} x.data - data buffer
* @param {NonNegativeIntegerArray} x.shape - dimensions
* @param {IntegerArray} x.strides - stride lengths
* @param {NonNegativeInteger} x.offset - index offset
* @param {string} x.order - specifies whether `x` is row-major (C-style) or column-major (Fortran-style)
* @param {Object} y - object containing output ndarray meta data
* @param {*} y.dtype - data type
* @param {Collection} y.data - data buffer
* @param {NonNegativeIntegerArray} y.shape - dimensions
* @param {IntegerArray} y.strides - stride lengths
* @param {NonNegativeInteger} y.offset - index offset
* @param {string} y.order - specifies whether `y` is row-major (C-style) or column-major (Fortran-style)
* @param {Callback} fcn - callback function
* @param {*} thisArg - callback execution context
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* function scale( z ){
* return z * 10.0;
* }
*
* // Create a data buffers:
* var xbuf = new Float64Array( [ 1.0, 2.0 ] );
* var ybuf = new Float64Array( 1 );
*
* // Define the shape of the input and output arrays:
* var shape = [];
*
* // Define the array strides:
* var sx = [ 0 ];
* var sy = [ 0 ];
*
* // Define the index offset:
* var ox = 1;
* var oy = 0;
*
* // Create the input and output ndarray-like object:
* var x = {
* 'ref': null,
* 'dtype': 'float64',
* 'data': xbuf,
* 'shape': shape,
* 'strides': sx,
* 'offset': ox,
* 'order': 'row-major'
* };
* var y = {
* 'dtype': 'float64',
* 'data': ybuf,
* 'shape': shape,
* 'strides': sy,
* 'offset': oy,
* 'order': 'row-major'
* }
*
* // Apply function:
* map0d( x, y, scale, {} );
*
* console.log( y.data );
* // => <Float64Array>[ 20.0 ]
*/
function map0d( x, y, fcn, thisArg ) {
y.data[ y.offset ] = fcn.call( thisArg, x.data[ x.offset ], [], x.ref );
}
// EXPORTS //
module.exports = map0d;
|