Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var reinterpret = require( '@stdlib/strided/base/reinterpret-complex128' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
// MAIN //
/**
* Applies a plane rotation with real cosine and complex sine.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Complex128Array} zx - first input array
* @param {integer} strideX - `zx` stride length
* @param {NonNegativeInteger} offsetX - starting `zx` index
* @param {Complex128Array} zy - second input array
* @param {integer} strideY - `zy` stride length
* @param {NonNegativeInteger} offsetY - starting `zy` index
* @param {number} c - cosine of the angle of rotation
* @param {Complex128} s - sine of the angle of rotation
* @returns {Complex128Array} `zy`
*
* @example
* var Complex128Array = require( '@stdlib/array/complex128' );
* var Complex128 = require( '@stdlib/complex/float64/ctor' );
*
* var zx = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
* var zy = new Complex128Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
* var s = new Complex128( 0.3, 0.4 );
*
* zrot( zx.length, zx, 1, 0, zy, 1, 0, 0.8, s );
*
* var z = zy.get( 0 );
* // returns <Complex128>[ ~-1.1, ~-0.2 ]
*
* z = zx.get( 0 );
* // returns <Complex128>[ ~0.8, ~1.6 ]
*/
function zrot( N, zx, strideX, offsetX, zy, strideY, offsetY, c, s ) {
var viewX;
var viewY;
var sr;
var si;
var sx;
var sy;
var ix;
var iy;
var yr;
var yi;
var xr;
var xi;
var i;
if ( N <= 0 ) {
return zy;
}
viewX = reinterpret( zx, 0 );
viewY = reinterpret( zy, 0 );
ix = offsetX * 2;
iy = offsetY * 2;
sx = strideX * 2;
sy = strideY * 2;
sr = real( s );
si = imag( s );
for ( i = 0; i < N; i++ ) {
yr = viewY[ iy ];
yi = viewY[ iy+1 ];
xr = viewX[ ix ];
xi = viewX[ ix+1 ];
// Compute tmp = c * zx[ ix ] + s * zy[ iy ]
viewX[ ix ] = ( c*xr ) + ( ( sr*yr ) - ( si*yi ) );
viewX[ ix+1 ] = ( c*xi ) + ( ( sr*yi ) + ( si*yr ) );
// Compute zy[ iy ] = c * zy[ iy ] - conj(s) * zx[ ix ]
viewY[ iy ] = ( c*yr ) - ( ( sr*xr ) + ( si*xi ) );
viewY[ iy+1 ] = ( c*yi ) - ( ( sr*xi ) - ( si*xr ) );
ix += sx;
iy += sy;
}
return zy;
}
// EXPORTS //
module.exports = zrot;
|