Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var f32 = require( '@stdlib/number/float64/base/to-float32' );
// MAIN //
/**
* Computes the `L * D * L^T` factorization of a real symmetric positive definite tridiagonal matrix `A`.
*
* @private
* @param {NonNegativeInteger} N - order of matrix `A`
* @param {Float32Array} D - the `N` diagonal elements of `A`
* @param {integer} strideD - stride length for `D`
* @param {NonNegativeInteger} offsetD - starting index of `D`
* @param {Float32Array} E - the `N-1` subdiagonal elements of `A`
* @param {integer} strideE - stride length for `E`
* @param {NonNegativeInteger} offsetE - starting index of `E`
* @returns {integer} status code
*
* @example
* var Float32Array = require( '@stdlib/array/float32' );
*
* var D = new Float32Array( [ 4.0, 5.0, 6.0 ] );
* var E = new Float32Array( [ 1.0, 2.0 ] );
*
* spttrf( 3, D, 1, 0, E, 1, 0 );
* // D => <Float32Array>[ 4, 4.75, ~5.15789 ]
* // E => <Float32Array>[ 0.25, ~0.4210 ]
*/
function spttrf( N, D, strideD, offsetD, E, strideE, offsetE ) {
var id;
var ie;
var v;
var i;
if ( N === 0 ) {
return 0;
}
ie = offsetE;
id = offsetD;
// Compute the `L * D * L^T` factorization of `A`...
for ( i = 0; i < N-1; i++ ) {
// If `D[k] <= 0`, then the matrix is not positive definite...
if ( D[ id ] <= 0.0 ) {
return i+1;
}
// Solve for E[k] and D[k+1]...
v = E[ ie ];
E[ ie ] = f32( v / D[ id ] );
id += strideD;
D[ id ] = f32( D[ id ] - f32( E[ ie ] * v ) );
ie += strideE;
}
// Check `D[k]` for positive definiteness...
if ( D[ id ] <= 0.0 ) {
return N;
}
return 0;
}
// EXPORTS //
module.exports = spttrf;
|