All files / dpttrf/lib base.js

60.24% Statements 50/83
100% Branches 1/1
0% Functions 0/1
60.24% Lines 50/83

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 841x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x                                                                   1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MAIN //
 
/**
* Computes the `L * D * L^T` factorization of a real symmetric positive definite tridiagonal matrix `A`.
*
* @private
* @param {NonNegativeInteger} N - order of matrix `A`
* @param {Float64Array} D - the `N` diagonal elements of `A`
* @param {integer} strideD - stride length for `D`
* @param {NonNegativeInteger} offsetD - starting index of `D`
* @param {Float64Array} E - the `N-1` subdiagonal elements of `A`
* @param {integer} strideE - stride length for `E`
* @param {NonNegativeInteger} offsetE - starting index of `E`
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var D = new Float64Array( [ 4.0, 5.0, 6.0 ] );
* var E = new Float64Array( [ 1.0, 2.0 ] );
*
* dpttrf( 3, D, 1, 0, E, 1, 0 );
* // D => <Float64Array>[ 4, 4.75, ~5.15789 ]
* // E => <Float64Array>[ 0.25, ~0.4210 ]
*/
function dpttrf( N, D, strideD, offsetD, E, strideE, offsetE ) {
	var id;
	var ie;
	var v;
	var i;

	if ( N === 0 ) {
		return 0;
	}
	ie = offsetE;
	id = offsetD;

	// Compute the `L * D * L^T` factorization of `A`...
	for ( i = 0; i < N-1; i++ ) {
		// If `D[k] <= 0`, then the matrix is not positive definite...
		if ( D[ id ] <= 0.0 ) {
			return i+1;
		}
		// Solve for E[k] and D[k+1]...
		v = E[ ie ];
		E[ ie ] = v / D[ id ];

		id += strideD;
		D[ id ] -= E[ ie ] * v;

		ie += strideE;
	}
	// Check `D[k]` for positive definiteness...
	if ( D[ id ] <= 0.0 ) {
		return N;
	}
	return 0;
}
 
 
// EXPORTS //
 
module.exports = dpttrf;