All files / dgttrf/lib dgttrf.js

92.1% Statements 70/76
100% Branches 1/1
0% Functions 0/1
92.1% Lines 70/76

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 771x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x             1x 1x 1x 1x 1x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var format = require( '@stdlib/string/format' );
var base = require( './base.js' );
 
 
// MAIN //
 
/**
* Computes an `LU` factorization of a real tridiagonal matrix `A` using elimination with partial pivoting and row interchanges.
*
* ## Notes
*
* -   `DL` should have `N-1` elements and is overwritten by the multipliers that define the matrix `L` from the `LU` factorization of `A`.
* -   `D` is overwritten by the diagonal elements of the upper triangular matrix `U` from the `LU` factorization of `A`.
* -   `DU` should have `N-1` elements and is overwritten by the elements of the first super-diagonal of `U`.
* -   `DU2` should have `N-2` elements and is overwritten by the elements of the second super-diagonal of `U`.
* -   For `0 <= i < n`, row `i` of the matrix is interchanged with row `IPIV(i)`. `IPIV(i)` will always be either `i` or `i+1`. `IPIV(i) = i` indicates a row interchange was not required.
*
* @param {NonNegativeInteger} N - number of rows/columns in `A`
* @param {Float64Array} DL - the first sub diagonal of `A`
* @param {Float64Array} D - the diagonal of `A`, expects N indexed elements
* @param {Float64Array} DU - the first super-diagonal of `A`
* @param {Float64Array} DU2 - the second super-diagonal of `U`
* @param {Int32Array} IPIV - vector of pivot indices
* @throws {RangeError} first argument must be a nonnegative integer
* @returns {integer} status code
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Int32Array = require( '@stdlib/array/int32' );
*
* var DL = new Float64Array( [ 1.0, 1.0 ] );
* var D = new Float64Array( [ 2.0, 3.0, 1.0 ] );
* var DU = new Float64Array( [ 1.0, 1.0 ] );
* var DU2 = new Float64Array( [ 0.0 ] );
* var IPIV = new Int32Array( [ 0, 0, 0 ] );
*
* dgttrf( 3, DL, D, DU, DU2, IPIV );
* // DL => <Float64Array>[ 0.5, 0.4 ]
* // D => <Float64Array>[ 2.0, 2.5, 0.6 ]
* // DU => <Float64Array>[ 1.0, 1.0 ]
* // DU2 => <Float64Array>[ 0.0 ]
* // IPIV => <Int32Array>[ 0, 1, 2 ]
*/
function dgttrf( N, DL, D, DU, DU2, IPIV ) { // eslint-disable-line stdlib/jsdoc-doctest-decimal-point
	if ( N < 0 ) {
		throw new RangeError( format( 'invalid argument. First argument must be a nonnegative integer. Value: `%d`.', N ) );
	}
	return base( N, DL, 1, 0, D, 1, 0, DU, 1, 0, DU2, 1, 0, IPIV, 1, 0 );
}
 
 
// EXPORTS //
 
module.exports = dgttrf;