Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x 1x | /**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var f32 = require( '@stdlib/number/float64/base/to-float32' );
var reinterpret = require( '@stdlib/strided/base/reinterpret-complex64' );
var realf = require( '@stdlib/complex/float32/real' );
var imagf = require( '@stdlib/complex/float32/imag' );
// MAIN //
/**
* Applies a plane rotation with real cosine and complex sine.
*
* @param {PositiveInteger} N - number of indexed elements
* @param {Complex64Array} cx - first input array
* @param {integer} strideCX - `cx` stride length
* @param {NonNegativeInteger} offsetCX - starting `cx` index
* @param {Complex64Array} cy - second input array
* @param {integer} strideCY - `cy` stride length
* @param {NonNegativeInteger} offsetCY - starting `cy` index
* @param {number} c - cosine of the angle of rotation
* @param {Complex64} s - sine of the angle of rotation
* @returns {Complex64Array} `cy`
*
* @example
* var Complex64Array = require( '@stdlib/array/complex64' );
* var Complex64 = require( '@stdlib/complex/float32/ctor' );
*
* var cx = new Complex64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
* var cy = new Complex64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
* var s = new Complex64( 0.3, 0.4 );
*
* crot( cx.length, cx, 1, 0, cy, 1, 0, 0.8, s );
*
* var z = cy.get( 0 );
* // returns <Complex64>[ ~-1.1, ~-0.2 ]
*
* z = cx.get( 0 );
* // returns <Complex64>[ ~0.8, ~1.6 ]
*/
function crot( N, cx, strideCX, offsetCX, cy, strideCY, offsetCY, c, s ) {
var viewX;
var viewY;
var sr;
var si;
var sx;
var sy;
var ix;
var iy;
var yr;
var yi;
var xr;
var xi;
var i;
if ( N <= 0 ) {
return cy;
}
viewX = reinterpret( cx, 0 );
viewY = reinterpret( cy, 0 );
ix = offsetCX * 2;
iy = offsetCY * 2;
sx = strideCX * 2;
sy = strideCY * 2;
sr = realf( s );
si = imagf( s );
for ( i = 0; i < N; i++ ) {
yr = viewY[ iy ];
yi = viewY[ iy+1 ];
xr = viewX[ ix ];
xi = viewX[ ix+1 ];
// Compute tmp = c * cx[ ix ] + s * cy[ iy ]
viewX[ ix ] = f32( f32( c*xr ) + f32( f32( sr*yr ) - f32( si*yi ) ) );
viewX[ ix+1 ] = f32( f32( c*xi ) + f32( f32( sr*yi ) + f32( si*yr ) ) );
// Compute cy[ iy ] = c * cy[ iy ] - conj(s) * cx[ ix ]
viewY[ iy ] = f32( f32( c*yr ) - f32( f32( sr*xr ) + f32( si*xi ) ) );
viewY[ iy+1 ] = f32( f32( c*yi ) - f32( f32( sr*xi ) - f32( si*xr ) ) );
ix += sx;
iy += sy;
}
return cy;
}
// EXPORTS //
module.exports = crot;
|