Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 32x 4x 4x 4x 4x 28x 32x 4x 2x 2x 2x 2x 2x 2x 2x 2x 24x 24x 24x 32x 96x 96x 72x 72x 26x 72x 46x 46x 72x 72x 72x 70x 72x 2x 2x 72x 72x 72x 72x 96x 96x 24x 24x 24x 32x 3x 3x 3x 3x 3x | /** * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var abs = require( '@stdlib/math/base/special/abs' ); // MAIN // /** * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. * * ## Method * * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). * * ## References * * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). * * @param {PositiveInteger} N - number of indexed elements * @param {Float64Array} x - input array * @param {integer} strideX - stride length for `x` * @param {NonNegativeInteger} offsetX - starting index for `x` * @param {Float64Array} out - output array * @param {integer} strideOut - stride length for `out` * @param {NonNegativeInteger} offsetOut - starting index for `out` * @returns {Float64Array} output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); * var out = new Float64Array( 2 ); * * var v = dnannsumkbn2( 5, x, 2, 1, out, 1, 0 ); * // returns <Float64Array>[ 5.0, 4 ] */ function dnannsumkbn2( N, x, strideX, offsetX, out, strideOut, offsetOut ) { var sum; var ccs; var cs; var cc; var ix; var io; var v; var t; var c; var n; var i; sum = 0.0; io = offsetOut; if ( N <= 0 ) { out[ io ] = sum; out[ io+strideOut ] = 0; return out; } ix = offsetX; if ( strideX === 0 ) { if ( isnan( x[ ix ] ) ) { out[ io ] = sum; out[ io+strideOut ] = 0; return out; } out[ io ] = x[ ix ] * N; out[ io+strideOut ] = N; return out; } ccs = 0.0; // second order correction term for lost low order bits cs = 0.0; // first order correction term for lost low order bits n = 0; for ( i = 0; i < N; i++ ) { v = x[ ix ]; if ( isnan( v ) === false ) { t = sum + v; if ( abs( sum ) >= abs( v ) ) { c = (sum-t) + v; } else { c = (v-t) + sum; } sum = t; t = cs + c; if ( abs( cs ) >= abs( c ) ) { cc = (cs-t) + c; } else { cc = (c-t) + cs; } cs = t; ccs += cc; n += 1; } ix += strideX; } out[ io ] = sum + cs + ccs; out[ io+strideOut ] = n; return out; } // EXPORTS // module.exports = dnannsumkbn2; |