All files / blas/base/dger/lib base.js

100% Statements 189/189
100% Branches 7/7
100% Functions 1/1
100% Lines 189/189

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 1903x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 48x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 24x 48x 48x 48x 48x 48x 48x 120x 120x 10x 120x 110x 110x 110x 264x 264x 264x 264x 110x 120x 120x 120x 48x 48x 3x 3x 3x 3x 3x  
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
 
'use strict';
 
// MODULES //
 
var isRowMajor = require( '@stdlib/ndarray/base/assert/is-row-major' );
 
 
// MAIN //
 
/**
* Performs the rank 1 operation `A = α*x*y^T + A`, where `α` is a scalar, `x` is an `M` element vector, `y` is an `N` element vector, and `A` is an `M` by `N` matrix.
*
* ## Notes
*
* -   To help motivate the use of loop interchange below, we first recognize that a matrix stored in row-major order is equivalent to storing the matrix's transpose in column-major order. For example, consider the following 2-by-3 matrix `A`
*
*     ```tex
*     A = \begin{bmatrix}
*         1 & 2 & 3 \\
*         4 & 5 & 6
*         \end{bmatrix}
*     ```
*
*     When stored in a linear buffer in column-major order, `A` becomes
*
*     ```text
*     [ 1 4 2 5 3 6]
*     ```
*
*     When stored in a linear buffer in row-major order, `A` becomes
*
*     ```text
*     [ 1 2 3 4 5 6]
*     ```
*
*     Now consider the transpose of `A`
*
*     ```tex
*     A^T = \begin{bmatrix}
*         1 & 4 \\
*         2 & 5 \\
*         3 & 6
*         \end{bmatrix}
*     ```
*
*     When the transpose is stored in a linear buffer in column-major order, the transpose becomes
*
*     ```text
*     [ 1 2 3 4 5 6 ]
*     ```
*
*     Similarly, when stored in row-major order, the transpose becomes
*
*     ```text
*     [ 1 4 2 5 3 6 ]
*     ```
*
*     As may be observed, `A` stored in column-major order is equivalent to storing the transpose of `A` in row-major order, and storing `A` in row-major order is equivalent to storing the transpose of `A` in column-major order, and vice versa.
*
*     Hence, we can interpret an `M` by `N` row-major matrix `B` as the matrix `A^T` stored in column-major order. In which case, we can derive an update equation for `B` as follows:
*
*     ```tex
*     \begin{align*}
*     B &= A^T \\
*       &= (\alpha \bar{x} \bar{y}^T + A)^T \\
*       &= (\alpha \bar{x} \bar{y}^T)^T + A^T \\
*       &= \alpha (\bar{x} \bar{y}^T)^T + A^T \\
*       &= \alpha \bar{y} \bar{x}^T + A^T \\
*       &= \alpha \bar{y} \bar{x}^T + B
*     \end{align*}
*     ```
*
*     Accordingly, we can reuse the same loop logic for column-major and row-major `A` by simply swapping `x` and `y` and `M` and `N` when `A` is row-major order. That is the essence of loop interchange.
*
* @private
* @param {NonNegativeInteger} M - number of rows in the matrix `A`
* @param {NonNegativeInteger} N - number of columns in the matrix `A`
* @param {number} alpha - scalar constant
* @param {Float64Array} x - first input vector
* @param {integer} strideX - `x` stride length
* @param {NonNegativeInteger} offsetX - starting index for `x`
* @param {Float64Array} y - second input vector
* @param {integer} strideY - `y` stride length
* @param {NonNegativeInteger} offsetY - starting index for `y`
* @param {Float64Array} A - input matrix
* @param {integer} strideA1 - stride of the first dimension of `A`
* @param {integer} strideA2 - stride of the second dimension of `A`
* @param {NonNegativeInteger} offsetA - starting index for `A`
* @returns {Float64Array} `A`
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
* var x = new Float64Array( [ 1.0, 1.0 ] );
* var y = new Float64Array( [ 1.0, 1.0, 1.0 ] );
*
* dger( 2, 3, 1.0, x, 1, 0, y, 1, 0, A, 3, 1, 0 );
* // A => <Float64Array>[ 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 ]
*/
function dger( M, N, alpha, x, strideX, offsetX, y, strideY, offsetY, A, strideA1, strideA2, offsetA ) { // eslint-disable-line max-params, max-len
	var tmp;
	var da0;
	var da1;
	var S0;
	var S1;
	var sx;
	var sy;
	var ia;
	var ix;
	var iy;
	var i0;
	var i1;
 
	// Note on variable naming convention: S#, da#, ia#, i# where # corresponds to the loop number, with `0` being the innermost loop...
 
	// Extract loop variables for purposes of loop interchange: dimensions and loop offset (pointer) increments...
	if ( isRowMajor( [ strideA1, strideA2 ] ) ) {
		// For row-major matrices, the last dimension has the fastest changing index...
		S0 = N;
		S1 = M;
		da0 = strideA2;                   // offset increment for innermost loop
		da1 = strideA1 - ( S0*strideA2 ); // offset increment for outermost loop
 
		// Swap the vectors...
		tmp = x;
		x = y;
		y = tmp;
 
		tmp = strideX;
		strideX = strideY;
		strideY = tmp;
 
		tmp = offsetX;
		offsetX = offsetY;
		offsetY = tmp;
	} else { // order === 'column-major'
		// For column-major matrices, the first dimension has the fastest changing index...
		S0 = M;
		S1 = N;
		da0 = strideA1;                   // offset increment for innermost loop
		da1 = strideA2 - ( S0*strideA1 ); // offset increment for outermost loop
	}
	sx = strideX;
	sy = strideY;
	ix = offsetX;
	iy = offsetY;
	ia = offsetA;
	for ( i1 = 0; i1 < S1; i1++ ) {
		// Check whether we can avoid the inner loop entirely...
		if ( y[ iy ] === 0.0 ) {
			ia += da0 * S0;
		} else {
			tmp = alpha * y[ iy ];
			ix = offsetX;
			for ( i0 = 0; i0 < S0; i0++ ) {
				A[ ia ] += x[ ix ] * tmp;
				ix += sx;
				ia += da0;
			}
		}
		iy += sy;
		ia += da1;
	}
	return A;
}
 
 
// EXPORTS //
 
module.exports = dger;